

Cambridge International Examinations Cambridge Ordinary Level

CHEMISTRY

5070/41 May/June 2016

Paper 4 Alternative to Practical MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

 \circledast IGCSE is the registered trademark of Cambridge International Examinations.

Page 2	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2016	5070	41

Question	Answer	Marks
1(a)	C (1) E (1) B (1) D (1)	4
1(b)(i)	Y	1
1(b)(ii)	X	1
1(b)(iii)	Z	1

Question	Answer	Marks
2(a)(i)	Red	1
2(a)(ii)	Universal Indicator/pH paper (1)	2
	pH meter (1)	
2(a)(iii)	0 to 2	1
2(b)(i)	Effervescence / fizzing / bubbles	1
2(b)(ii)	Reaction with hydrochloric acid is faster (1)	2
	Hydrochloric acid is a strong acid, ethanoic acid is a weak acid (1)	
2(c)(i)	Hydrogen (1)	2
	Pops in a flame/burning splint/lighted splint (1)	
2(c)(ii)	$Mg + 2HCl \rightarrow MgCl_2 + H_2$	1

Question	Answer	Marks
3	В	1

Question	Answer	Marks
4	D	1

Question	Answer	Marks
5	В	1

Question	Answer	Marks
6	В	1

Page 3

Mark Scheme	Syllabus	Paper
Cambridge O Level – May/June 2016	5070	41

Question	Answer	Marks
7(a)	1.46 (g)	1
7(b)	Blue to colourless	1
7(c)	25.9 48.6 32.4	4
	0.0 23.3 7.3 (3)	
	25.9 25.3 25.1	
	Mean titre = $25.2 \mathrm{cm}^3$ (1)	
7(d)	0.00252	1
7(e)	0.00252	1
7(f)	0.0252	1
7(g)	0.05	1
7(h)	0.0248	1
7(i)	0.0124	1
7(j)	1.46 / 0.0124 = 118	1
7(k)	118 – 90 (1)	2
	x = 2 $y = 4$ (1)	
7(l)	$C_2H_5OOCC_2H_4COOC_2H_5$	1

Question	Answer	Marks
8(a)	Colourless (solution)	1
8(b)	White precipitate (1)	2
	Soluble in excess/colourless solution (1)	
8(c)	White precipitate (1)	2
	Insoluble in excess (1)	
8(d)	(Dilute) nitric acid/HNO ₃ (1)	3
	Silver Nitrate/AgNO ₃ (1)	
	Yellow precipitate (1)	
8(e)	Al I ₃	1
8(f)	Precipitate is soluble in excess	1

Page 4	Mark Scheme	Syllabus	Paper
	Cambridge O Level – May/June 2016	5070	41

Question	Answer	Marks
9(a)	44, 64, 74, 80	1
9(b)	All points plotted correctly (1)	3
	Two curves through both sets of points (1 mark for each)	
9(c)	Volume must be from candidate's graph e.g. 70 cm ³	1
9(d)	Use volumes from candidate's graph	2
	e.g. Exp 1: $40/45 = 0.89 (cm^3/s) (1)$	
	Exp 2: $56/45 = 1.24 (\text{cm}^3/\text{s}) (1)$	
9(e)	Catalyst (1)	2
	Increases the rate of the reaction (1)	
9(f)	The reaction is complete or finished/all $KClO_3$ is used up	1
9(g)	$2 \times 122.5 \text{ g KC} lO_3$ produces $3 \times 24000 \text{ cm}^3 \text{ of } O_2$ (1)	3
	84 (cm ³) are produced from 2 \times 122.5 \times 84 / 3 \times 24000 (1)	
	= 0.286 (g) (1)	
	OR Moles of O_2 produced = 84/24000 Moles of KC lO_3 = 2 × 84 /3 × 24000 (1)	
	Mass of KClO ₃ = $2 \times 84 \times 122.5 / 3 \times 24000$ (1)	
	= 0.286 (g) (1)	